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Abstract 

Background: Case–control studies based on pharmaco-epidemiological databases typically use decision rules to 
determine exposure status from information on dates of prescription redemptions, although this induces misclassifi-
cation. The reverse Waiting Time Distribution has been suggested as a likelihood based model to estimate the latent 
exposure status, and we therefore suggest to extend this into a joint likelihood based model, which incorporates both 
the latent exposure status and the exposure-outcome association. This will achieve consistency and efficiency of the 
estimates, i.e. they can be expected to be asymptotically unbiased and have optimal precision.

Methods: We established a joint likelihood for the observed case–control status and last prescription redemption 
before the index date. The likelihood combines the ordinary logistic regression likelihood and the reverse Waiting 
Time Distribution, and allows inclusion of covariates in both parts to adjust for observed confounders. We conducted 
a simulation study of the new model and standard models based on decision rules for exposure and the probability of 
being exposed, respectively, to assess the relative bias and variability of estimates. Lastly, we applied the models to a 
case–control study on use of nonsteroidal anti-inflammatory drugs and risk of upper-gastrointestinal bleeding.

Results: In simulation studies the new model had low relative bias (< 1.4%) and largely retained nominal coverage 
probabilities (90.2% to 95.1% of nominal 95% confidence intervals), also when moderate misspecification was intro-
duced. All standard methods generally had substantial bias (-21.1% to 17.0%) and low coverage probabilities (0.0% 
to 68.9%). When analyzing the empirical case–control study, the new method estimated the effect of nonsteroidal 
anti-inflammatory drugs on risk of with upper-gastrointestinal bleeding hospitalization to 2.52 (1.59 – 3.45), whereas 
the other methods had estimates ranging from 3.52 (2.19 – 5.65) to 5.17 (2.40 – 11.11).

Conclusions: Unlike standard methods, the proposed model gave nearly unbiased estimates with adequate cover-
age probabilities in simulation studies. The developed model demonstrates the potential for the reverse Waiting Time 
Distribution to be integrated with existing likelihood based analyses in pharmacoepidemiological studies.

Keywords: Case–control study, Reverse waiting time distribution, Maximum likelihood, Parametric modelling, 
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Background
Pharmacoepidemiologic case–control studies are com-
monly based on routinely collected register data, as this 
is an efficient strategy for assessing the risk of adverse 
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drug effects in real-world settings. Typically in such 
studies, exposure information is obtained from data-
bases recording all individual prescription redemptions 
for a population and then linked with information on 
for example hospital admissions for each individual in 
the population. Since the actual treatment after redeem-
ing a prescription is not recorded, such studies routinely 
rely on decision rules for defining drug exposure status 
at the index time for both cases and controls. To avoid 
using such decision rules, we have previously developed 
the reverse Waiting Time Distribution (WTD) approach 
to estimate treatment duration after redeeming a pre-
scription. In simulation studies and an empirical valida-
tion study for Warfarin, the method provided estimates 
with low bias, unless the model was severely misspecified 
[1, 2]. In a recent study, we suggested to use the reverse 
WTD to estimate the probability of being exposed on 
the index date, and use this probability as exposure vari-
able [3]. The objective was to better allow for the fact that 
the actual exposure status is not recorded, and that the 
analyst may therefore introduce misclassification bias 
when forcing a dichotomy upon exposure. The approach 
was intended to directly represent the analyst’s uncer-
tainty about actual exposure by using probability of 
being exposed as exposure covariate. We found that the 
approach improved statistical efficiency when studying 
the risk of upper gastrointestinal bleeding (UGIB) asso-
ciated with use of a nonsteroidal anti-inflammatory drug 
(NSAID) [3]. The suggested method consisted of two 
steps: First, a parametric reverse WTD model was fit-
ted to the last observed NSAID prescription redemption 
among controls before their index date to estimate their 
probability of being users on the index date. Second, we 
used the predicted probability as covariate in a logistic 
regression with case–control status as outcome.

However, both the traditional approach based on a 
simple decision rule and the approach using the prob-
ability of exposure as covariate are susceptible to mis-
classification bias. Also, they are not able to incorporate 
the uncertainty regarding the actual exposure into 
the subsequent analysis estimating the effect of being 
exposed with respect to the outcome of interest. This 
will bias uncertainty estimates for estimated parame-
ters. To overcome these biases, we here propose to base 
estimation on a joint parametric likelihood for the last 
observed prescription redemption in the year preceding 
the index date, if any, together with the observed case–
control status. From a theoretical point of view, formula-
tion of a full likelihood model is attractive as it provides 
estimates based on a coherent and transparent model 
of what is actually observed, i.e. the case–control status 
and the time of last redemption before the index date. 
Since the observed data are conceptually linked together 

via the unobserved (i.e. latent) exposure status, we can 
obtain estimates for the exposure-outcome relation by 
maximizing the likelihood. Based on general likelihood 
theory, such estimates can be expected to have optimal 
large sample properties [4]. Note that when no prescrip-
tion redemption is observed in the year before the index 
date, we can safely assume that the person is unexposed, 
and thus such persons can also be readily included in the 
analysis.

In this paper, we first establish the new joint likeli-
hood, which is a synthesis of a reverse WTD model and 
the ordinary logistic regression of exposure status among 
cases and controls. In a simulation study we then com-
pare the performance of the new joint likelihood model 
with classic decision-rule based analyses, as well as the 
previous suggestion of a two-step model based on expo-
sure probabilities, and we investigate the impact of mis-
specification. We finally apply the models to a Danish 
case–control study with data on NSAID prescription 
redemptions and hospitalization with UGIB.

Methods
Consider a case–control study with pharmacoepidemio-
logic exposure data. The observations include an index 
date for each case and control and their outcome status on 
the index date (case–control status), which we denote by 
Y = 1 for cases and Y = 0 for controls. Prior to the index 
date we observe a last prescription before the index date 
for each individual, if the individual has at least one pre-
scription in a time window of observation before the index 
date. We let R denote the time from this last prescription 
redemption to the index date, and let V  denote whether 
a prescription redemption was observed ( V = 1 ) or not 
( V = 0).

As a starting point, let us assume that if a person is in 
continued treatment with a drug, then (s)he will redeem 
prescriptions following a renewal process with f (t) as the 
inter-arrival density (IAD) between subsequent redemp-
tions. When this renewal process is intercepted at an 
index date, R is the time from the last renewal (redemp-
tion) before the index date until the index date (Fig.  1). 
We let X denote whether a person continues having 
prescription redemptions ( X = 1 ) or not ( X = 0 ) after 
the last observed prescription redemption before the 
index date. Note that we have in previous papers shown 
that even if the assumption of redemptions following 
a renewal process is violated, then the backward recur-
rence time (time from last prescription redemption 
before the index date to the index date) can still be rea-
sonably modelled as if originating from a renewal pro-
cess [1, 5]. Also note, that since X is not observed, we use 
this as a latent variable, whose distribution will depend 
on observed time since last prescription redemption and 
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case–control status, as described below. This avoids con-
ditioning on the future.

Concerning the outcome and exposure in the case–
control study, a person can either be a case, Y = 1 , or a 
control, Y = 0 , at the index date t0 , and be exposed to 
treatment, Z = 1 , or not, Z = 0 . We will assume that the 
case–control status of a person depends on the true, but 
unobserved binary exposure status, Z , in the ordinary 
fashion of logistic regression, i.e.

In this formulation, exp(β1) is the odds ratio of inter-
est when studying the association between being exposed 
and becoming a case. To maintain mathematical feasi-
bility, we will assume that if the true exposure status is 
known, then whether a person is a case or a control is 
unrelated to the distribution of time since last prescrip-
tion redemption. In other words, we assume Y  and R are 
independent given Z.

Let us now consider the relation between redemptions 
and exposure status. When a person continues treat-
ment after the index date with one or more subsequent 

P(Y = 1|Z = z) =
exp(β0 + β1z)

1+ exp(β0 + β1z)

prescription redemptions ( X = 1 at the index date), then 
the person is by definition exposed at the index date 
( Z = 1 ). However, when the last prescription redemption 
observed before the index date is also the last redemption 
in the treatment of an individual ( X = 0 ), such individuals 
can be either treated ( Z = 1) or untreated ( Z = 0 ) on the 
index date (Fig.  1). This is because such individuals will 
remain exposed for some time after their last prescription 
redemption before they enter a state without treatment. 
We will assume that their duration of exposure after the 
prescription redemption, T  , follows the ordinary IAD of 
treated patients continuing treatment, i.e. the probability 
density function of T  is f (t) . Finally, we will assume that 
persons without a prescription redemption in an inter-
val before the index date, (t0 − δ; t0) , are unexposed. To 
accommodate this, we will let V  be an indicator variable, 
which is 1 if an individual has at least one redemption 
observed in (t0 − δ; t0) and 0 otherwise. Figure  1 gives 
an overview of the variables introduced and how they are 
related to four different characteristic patient types.

We can now write the likelihood contributions for each 
patient type by conditioning on X ,Z , and V  . In the fol-
lowing, we use pdf (·) as a generic probability density 
function for the relevant stochastic variables which are 

Fig. 1 Four typical persons (horizontal lines) representing the different types of contributions to the likelihood with respect to exposure status on 
the index date indicated by squares (filled: treated, unfilled: untreated). Black bullets represent prescription redemptions included in the likelihood, 
grey bullets are redemptions not included in the likelihood. The thicker black lines represent periods of treatment, whereas dashed lines are periods 
without treatment. T  is duration of the prescription and R is time from the last prescription redemption before the index date t0 until the index date. 
X  indicates whether a patient continues treatment, Z exposure status on the index date, and V  whether a prescription is redeemed in the interval 
(δ; t0) . For simplicity, index dates have been aligned on the time scale. Type refers to patient type, see text for details
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written as arguments. Patient type numbering refers to 
Fig. 1.

• Patient type 1: Patients continuing treatment, i.e. 
X = 1 , which implies that Z = 1,V = 1:

• Patient type 2A and 2B: Patients stopping treatment, 
i.e. X = 0,V = 1:

 where 1
δ
 is the uniform density associated with 

the last observed prescription redemption among 
patients stopping treatment. The uniform den-
sity corresponds to assuming a constant stopping 
rate with respect to the index date among treated. 
P(Z = 1|R = r,X = 0) = 1− F(r) is the probability 
of a person still being treated at the index date (patient 
type 2A), even though the person will stop treatment 
before any subsequent redemption. This is given by 
the probability of the treatment duration T  exceeding 
the time from the redemption to the index date, r , i.e.

 where F(·) is the cumulative density function of T  . The 
density of T  is assumed to be the IAD of users con-
tinuing treatment, and from the definition of the BRD 
we have the following relation:

 where M is the mean prescription duration, E(T ) . By 
definition this implies that the probability of being 
untreated at the index date for a patient stopping 
treatment (patient type 2B) is given by

pdf
(
R = r, Y = y||X = 1

)
= pdf (R = r|X = 1)

⋅ pdf
(
Y = y||X = 1,R = r

)

= g(r)
exp

(
�0 + �1

)y

1 + exp
(
�0 + �1

)

pdf
(
R = r,Y = y||X = 0

)
= pdf

(
Y = y||Z = 0

)

⋅ P(Z = 0|R = r,X = 0) ⋅ pdf (R = r|X = 0)

+ pdf
(
Y = y||Z = 1

)
⋅ P(Z = 1|R = r,X = 0)

⋅ pdf (R = r|X = 0)

=
1

�

(
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(
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(
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+
exp

(
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)y
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)

P(Z = 1|R = r,X = 0) = 1− F(r)

g(r) =
1− F(r)

M

P(Z = 0|R = r,X = 0) = F(r)

• Patient type 3: Patients without an observed prescrip-
tion redemption in the time window (t0 − δ; t0) , i.e. 
V = 0 , and who are therefore unexposed (Z = 0):

To complete the likelihood, we sum the three com-
ponents after multiplication with their probabilities of 
occurring, i.e. P(X = 1,V = 1),P(X = 0,V = 1) , and 
P(V = 0) , respectively. With obvious notation, we can 
parametrize the probabilities as follows:

In sum, the likelihood contribution for each individual 
becomes

The full likelihood for all individuals is the product of 
the individual likelihood contributions. We call this the 
joint likelihood as it is based on the joint density func-
tion for both the last prescription redemption before 
the index date, R , and the case–control status, Y  . In 
the joint likelihood, θ denotes the parameters which 
the IAD, and thus the BRD, depends upon and which 
must be estimated. If we choose a Log-Normal distribu-
tion for T  , then θ = (µ, σ) , and we have the following 
expressions for gθ and Fθ:

where � is the standard normal cumulative distribution 
function.

Note, that whether a case patient continues having 
prescription redemptions or not after the index date may 
be hypothetical in the sense that case status may pro-
hibit any further treatment. The model does, however, 
only rely on the distribution of R which is in principle 
unaffected by any termination of treatment after Y = 1 
has been observed (the case becomes a case).

Analogous with previous implementations of 
parametric WTDs, we have logit-transformed the 

pdf
(
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)
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y

1+ exp(β0)
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probability parameters, px and pv , and log-trans-
formed the parameter σ which is required to be posi-
tive. Instead of a Log-Normal distribution, other 
parametric distributions with support on the positive 
axis could be considered, for example the Weibull or 
Gamma distributions.

We have previously shown how parameters of the par-
ametric reverse WTD can be allowed to depend upon 
covariates in a regression-like setup [6], and the above 
formulation allows completely analogous inclusion of 
covariates. In particular, confounders which would ordi-
narily be included in an logistic regression analysis of the 
case–control study can be included in an equation for 
β0 . Also note that different parameters may depend on 
different sets of covariates.

Simulation study
The aim of the simulation studies was to examine the bias 
and precision of estimates. In the simulation study of the 
finite sample properties, we generated data compatible 
with the model developed above. More specifically, we 
used the following steps to create each dataset:

1. Generate a dataset of a given size with the actual 
latent exposure to treatment and case/control sta-
tus for each individual. The dataset must satisfy that 
there is a specific number of controls for each case 
(1 or 10), and such that the exposure status reflects 
a pre-specified odds-ratio value, here 3. Further, we 
specified the proportion of individuals expected 
to have a prescription redemption observed in the 
observation window of length one year (15% and 
25%, i.e. values for the probability pv defined above), 
and how many of these that are expected to continue 
treatment after the index date (40 and 80%, i.e. val-
ues for px ). The latter two proportions indicate the 
prevalence on the index date among individuals with 
a prescription redemption in the observation win-
dow. Based on these values it is possible to derive the 
probabilities of exposure among cases and controls, 
respectively, from which the exposure status can be 
drawn for all individuals in the dataset (see Addi-
tional file  1, Section A1 for details). Also for each 
individual it is randomly determined who has a pre-
scription redemption in the observation window, and 
such that it is compatible with the random exposure 
status – exposed individuals must have a redemption 
in the observation window, whereas only some unex-
posed individuals will have such a redemption.

2. For the individuals assigned to continue treatment, 
and thus be exposed on the index date, we draw a 
prescription redemption before the index time, which 

follows a Log-Normal BRD. The parameters of the 
BRD, (µ, σ) , are chosen such that they correspond to 
IADs with a median duration of 1.5 or 2 months, i.e. 
� = log (1.5∕12) or log (2∕12), and � = exp (−0.35) or exp(−0.25) , 
respectively. The values for both parameters were 
similar in magnitude to estimates found in the analy-
sis of the application presented below.

3. For individuals identified to stop treatment after 
index date, we randomly draw a uniformly distrib-
uted time of prescription redemption in the obser-
vation window, but such that for those still exposed 
on the index date their redemptions follow the 
above specified Log-Normal BRD. We used rejec-
tion sampling to satisfy the requirement of the mar-
ginal distribution being uniform among all treatment 
stoppers when redemptions of the exposed sub-pop-
ulation followed a Log-Normal BRD (see Additional 
file 1, Section A2 for details).

To examine the impact of a misspecified BRD, we also 
generated data with a Weibull BRD and analyzed the data 
with a model based on a Log-Normal BRD. To make the 
settings comparable, we used parameters such that the 
Weibull IAD had the same mean and variance as the Log-
Normal IAD corresponding to the µ and σ values stated 
above.

We generated datasets which consisted of 19,800 or 
39,600 individuals as this either resembled the applica-
tion below or had half the size of this application. For 
each scenario we generated 2,500 datasets, which we ana-
lyzed with five different approaches:

1. Logistic regression where exposure is the actually 
assigned exposure status, i.e. exposure is not latent 
and thus there is no misclassification bias.

2. The proposed joint likelihood model for case/control 
status and the rWTD, as developed above

3. Logistic regression with the estimated probability of 
being in treatment as exposure variable. The prob-
ability is estimated from an ordinary rWTD analysis.

4. Logistic regression where exposure status is based 
on a 90  days window – individuals are considered 
exposed if they have a prescription redemption 
within 90 days prior to their index date.

5. Logistic regression where exposure status is based 
on a 30  days window – individuals are considered 
exposed if they have a prescription redemption 
within 30 days prior to their index date.

All logistic regression analyses used case–control sta-
tus as outcome. The first analysis is the reference analy-
sis, as this is the analysis that would have been used for 
analyzing a case–control study with directly observed 
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exposure status. It can be expected to yield unbiased 
estimates and have optimal statistical efficiency (small-
est uncertainty intervals). We therefore benchmarked the 
other four analyses against it. Our primary interest was 
to establish whether the new joint model achieved its 
theoretical, asymptotic superiority in samples with a real-
istic size. For the two last approaches, we kept all gener-
ated individuals in the analysis to maintain comparability 
of standard errors with the other analyses, even though 
it is common practice in pharmacoepidemiologic stud-
ies to only include individuals which have no observed 
prescription redemptions (the reference group) or are 
classified as exposed (i.e. have a redemption inside the 
prespecified main exposure window) [3, 7].

For each method and setting we estimated the median 
relative bias of the estimated OR, the median standard 
error of the log-OR, the coverage probability of nominal 
95% confidence intervals and finally the relative variance 
inflation factor with respect to the optimal analysis when 
exposure status is directly observed.

Application
Cases and controls
As case material we used a case–control study also 
employed in previous publications, which was described 
in detail there [3, 7]. Briefly, our source population was 
the residents of Funen County, Denmark, during a study 
period of August 1, 1995 to July 31, 2006. We included 
as cases all subjects who were admitted to a hospital on 
Funen with UGIB, validated by single case review.

Controls were selected by a risk-set sampling strat-
egy, i.e. for each case, we randomly selected ten con-
trols among the subjects in our source population who 
matched the case by sex and birth year. Controls were 
assigned an index date identical to the outcome defining 
date of the corresponding case. We required that both 
cases and controls had been residents of Funen for at 
least one year on the index date. As some of the very old 
cases had less than 10 eligible controls, the final control 
to case ratio deviated slightly from 10:1.

Data analysis
Although data was collected with matching of controls to 
cases, we did not analyze the data conditional on match 
sets. Each matched set consisted of at most 11 individu-
als, which did not contain sufficient information to reli-
ably estimate parameters of a WTD for each matched 
set. Consequently, we ignored the matching and instead 
included the matching variables age and sex as covari-
ates in the association between exposure and case–con-
trol status, although this will likely introduce a small bias 
towards the null [8].

As reference analyses we considered logistic regression 
with case–control status as outcome and the exposure 
covariate with respect to NSAID defined as follows:

• WTD probability – the probability of being exposed 
as estimated by a reverse waiting time distribution 
among controls in the year prior to their index date. 
We let the WTD parameters depend on age, sex, 
quantity dispensed (in DDD), choice of ibuprofene 
(the dominant NSAID), concurrent use of proton 
pump inhibitors, a diagnosis of rheumatoid arthritis, 
psoriasis arthritis or spondylarthritis, and concurrent 
use of methotrexate or systemic corticosteroids. The 
latter variables (use of proton pump inhibitors and 
onwards) were intended to reflect markers of long-
term NSAID use. Based on estimated parameters, 
observed covariates and date of last NSAID dispens-
ing before the index date, we calculated the probabil-
ity of being exposed on their index date for each case 
and control. This method mimics the approach used 
in a previous paper, where it was termed the full mul-
tivariable model [3].

• 90 days – exposed if at least one NSAID redemption 
was observed within 90 days before the index date

• 30 days – exposed if at least one NSAID redemption 
was observed within 30 days before the index date

For all the above models, we estimated a crude OR with-
out adjustment for other variables and an adjusted OR. 
For the adjusted ORs, the following potential confound-
ers were included as covariates in the logistic regression: 
1) current use of the following drugs: vitamin K antago-
nists (VKA), aspirin, other antiplatelet drugs, dipyrida-
mol, beta-blockers, selective serotonin reuptake inhibitors 
(SSRIs), systemic corticosteroids, proton pump inhibitors 
(PPIs), H2 receptor antagonists, statins, nitrates, spirono-
lactone, calcium antagonists, bisphosphonates; 2) any his-
tory of the following events: NVUGB, Helicobacter pylori 
(HP) eradication, peptic ulcer, chronic obstructive pulmo-
nary disease (COPD), diabetes, ischemic heart disease, 
heart failure, stroke, hypertension, inflammatory bowel 
disease, malignant disease, renal failure; and 3) prescrip-
tion or diagnosis markers of smoking or excessive alcohol 
consumption. For all drugs used as covariates, current 
drug use was defined by the redeeming of a prescription 
within less than 120 days before the index date.

For the joint likelihood we let the parameters associ-
ated with the reverse WTD ( µ, σ and px ) depend on 
the same covariates as the reverse WTD described 
above when using probability of exposure as covariate, 
i.e. the following variables: age, sex, quantity dispensed 
(in DDD), use of ibuprofene (the dominant NSAID), 
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concurrent use of proton pump inhibitors, a diagnosis 
of rheumatoid arthritis, psoriasis arthritis or spondy-
larthritis, and concurrent use of methotrexate or sys-
temic corticosteroids. For the logistic regression part 
of the joint likelihood we either omitted or included 
the same covariates (for β0 ) as described above for 
the adjusted models. Correspondingly, we labeled the 
two models either crude or adjusted, although both 
included adjustment in the reverse WTD part of the 
model.

All statistical analyses were conducted in Stata 15 [9]. 
A dedicated software package (ccwtdttt) implement-
ing the method is provided at the IDEAS repository 

(http:// ideas. repec. org) and may be installed in Stata 
using a search for the package name, i.e. –search 
wtdttt, all–.

Results
Simulation study
Results of the simulation study are shown in Table  1 
for the setting with a sample size of 39,600; a fraction 
of 80% of patients continuing treatment; 25% of all indi-
viduals having at least one prescription redemption in 
the time window of one year prior to the index date; and 
an OR of 3.

Table 1 Simulation results, data generated with a log-normal backward recurrence density

The datasets had a sample size of 39,600, and on average 80% of patients continue treatment at the index date, 25% of patients have a prescription redemption in 
the year before the index date and the true OR is 3. For each setting 2,500 datasets were generated and analyzed. µ and σ are parameters of the assumed Log-Normal 
Backward Recurrence Density used for generating data, see text for details

(*) Analysis methods:

1:1 CC indicates 1 control per case, 1:10 CC indicates 10 controls per case

True expo – logistic regression with the actual exposure status as covariate (the reference analysis)

CC WTD – estimation based on joint likelihood for case–control status and the reverse WTD, Log-Normal Backward Recurrence Density

WTD prob – a reverse WTD with Log-Normal Backward Recurrence Density is estimated to predict the probability of an individual being exposed and this exposure 
probability is used as covariate in logistic regression

90 days – individuals are considered exposed if they have a redemption < 90 days before index date

30 days – individuals are considered exposed if they have a redemption < 30 days before index date, logistic regression

σ = exp(-0.35) σ = exp(-0.25)

Analysis method(*) Relative bias (%) SE log(OR) Coverage 
95% CI (%)

VIF Relative bias (%) SE log(OR) Coverage 
95% CI (%)

VIF

μ = log(1.5/12) 1:1 CC

True expo 0.0 0.027 95.6 1.00 0.0 0.027 95.3 1.00

CC WTD 0.4 0.029 95.1 1.15 0.8 0.029 93.5 1.19

WTD prob 17.0 0.037 0.0 1.91 17.1 0.038 0.0 2.00

90 days -6.7 0.028 24.3 1.08 -7.8 0.028 14.2 1.12

30 days -12.1 0.037 5.4 1.90 -12.9 0.038 3.8 2.01

1:10 CC

True expo 0.0 0.036 95.1 1.00 0.0 0.036 94.5 1.00

CC WTD 0.3 0.038 95.0 1.09 0.7 0.038 94.2 1.11

WTD prob 8.7 0.046 46.4 1.61 8.3 0.047 51.4 1.66

90 days -7.5 0.038 40.0 1.06 -9.1 0.038 25.6 1.08

30 days -18.2 0.046 1.0 1.60 -19.2 0.047 0.7 1.69

μ = log(2/12) 1:1 CC

True expo 0.0 0.027 94.4 1.00 0.0 0.027 94.4 1.00

CC WTD 1.0 0.029 93.6 1.19 1.7 0.030 90.2 1.24

WTD prob 14.4 0.036 0.8 1.84 14.1 0.037 1.3 1.91

90 days -8.1 0.029 14.1 1.18 -9.2 0.030 7.6 1.23

30 days -13.9 0.041 3.8 2.35 -14.5 0.042 3.9 2.48

1:10 CC

True expo 0.0 0.036 94.8 1.00 0.1 0.036 94.7 1.00

CC WTD 0.8 0.038 94.6 1.11 1.4 0.039 93.6 1.14

WTD prob 6.7 0.045 62.6 1.56 6.1 0.046 68.9 1.60

90 days -10.2 0.038 17.2 1.12 -11.7 0.039 8.2 1.15

30 days -21.1 0.051 0.5 1.94 -21.5 0.052 0.3 2.03

http://ideas.repec.org
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The new method based on a joint likelihood for the 
case status and last observed prescription redemption 
before the index date was virtually unbiased (range 0.3 
to 1.7%) with coverage probabilities close to the nomi-
nal value (range 90.2 to 95.1%) and relatively low VIFs 
(range 1.09 to 1.24). With 1:1 matching and a low µ value 
(median prescription duration of 1.5 months) there were 
a small number of datasets for which the likelihood esti-
mation did not converge (< 70 of 2,500).

Results were largely similar for the joint likelihood 
method when the sample size was halved to 19,800, 
although with higher coverage probabilities (see Addi-
tional file 1, Table A1) or when the fraction of patients 
continuing treatment was reduced to 40% (see Addi-
tional file  1, Table  A2). VIFs were however increased 
when fewer continued treatment (range 1.23 to 1.53). 
The other methods remained biased with low coverage 
probabilities, although their internal rank of perfor-
mance changed in some settings. 

In all settings there was substantial bias associated with 
the method of choosing a fixed exposure window, be it 30 
or 90 days (relative bias ranged from -6.7 to -21.5%). Corre-
spondingly, the coverage probabilities of nominal 95% con-
fidence intervals for the odds ratio were low (range 0.3 to 
40%). The variance inflation factor (VIF) varied consider-
ably relative to the optimal analysis in which the true expo-
sure status of individuals was directly observed (range 1.06 
to 2.48), but given the substantial bias this is less relevant.

The analysis based on estimating the probability of 
exposure with the rWTD and then use this probability 
as exposure covariate also led to substantial relative bias 
(range 6.1 to 17.1%), which indicates that this approach 
in general overestimated the association. This approach 
also had low coverage probabilities (range 0.0 to 68.9%), 
but consistently it had high VIFs relative to the optimal 
analysis (range 1.56 to 2.00). The low coverage prob-
abilities were thus not so much a consequence of small 
estimated standard errors, but rather of the magnitude 
of the bias.

When the BRD was misspecified (data generated from 
a Weibull BRD and analyzed with a model based on a 
Log-Normal BRD), the relative bias increased slightly 
for the joint likelihood ( ≤ 1.7%), coverage probabilities 
remained near the nominal level ( ≥ 90.1%), and VIFs 
were as above ( ≤ 1.25) (Table 2). Similar results were seen 
with the smaller sample size of 19,800 (see Additional 
file 1, Table A3). The bias, coverage and VIFs for the other 
analytic approaches were similar to the settings where a 
Log-Normal BRD was used for generating the data.

Application
The characteristics of cases and controls are shown in 
an additional table (see Additional file 1, Table A4). The 

joint likelihood model provided an unadjusted estimate 
of the NSAID effect on risk of UGIB similar to the other 
models (OR = 5.57 (5.08—6.05)), although the estimate 
based on the probability of being exposed was higher 
(Table  3). However, when the association was adjusted 
for confounders, the estimated effect (2.52 (1.59—3.45)) 
was substantially lower for the joint model than esti-
mates from the three other models. The joint model 
had better precision than the methods based on a fixed 
exposure window, but lower than the exposure probabil-
ity approach. As in the previous papers, when reporting 
estimates based on a fixed exposure window we omit-
ted patients who had an NSAID prescription outside 
the exposure window resulting in a lower sample size 
for these two analyses (30  days: n = 9,453 and 90  days: 
n = 12,662 vs the full sample size of 39,119). The gain in 
precision for the models based on the WTD is thus due 
to their ability to include the entire sample in the estima-
tion. Estimates were largely unchanged, whether we used 
conditional logistic regression to account for the age- and 
sex-matched design or included sex and age as covari-
ates in ordinary logistic regression with all three standard 
analyses. However, for the adjusted analyses, estimated 
ORs were smaller for the two analyses based on a fixed 
exposure window (30 days or 90 days).

Discussion
We have shown how it is possible to establish a likelihood 
for the effect of a latent exposure status in a case–con-
trol study, where the latent exposure status is modelled 
via a reverse Waiting Time Distribution (WTD). The 
reverse WTD relies on data regarding the last prescrip-
tion redemption before the index date, if any, which are 
observed in pharmacoepidemiologic databases. Simula-
tion studies showed that the developed model provided 
nearly unbiased estimates with confidence intervals 
largely achieving nominal coverage probabilities in set-
tings with realistic sample sizes, even with a misspeci-
fied model. This was not the case for the two standard 
approaches with fixed exposure windows, nor the 
method based on using estimated exposure probability 
as covariate. The precision of the joint likelihood esti-
mates was also better than the other methods as it had 
Variance Inflation Factors smaller than 1.25 relative to a 
model based on observing the true exposure status of all 
individuals. In the application, the joint likelihood model 
gave a lower adjusted estimate of the risk of UGIB associ-
ated with NSAID use than other methods. The joint like-
lihood model can be estimated with a Stata package we 
have made available online.

Theoretically, a full likelihood-based model provides 
the optimal analysis in terms of statistical efficiency, since 
it for large samples provides unbiased estimates with 
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minimal standard errors (Cramér-Rao lower bound) [4]. 
Other methods may yield smaller standard errors, but 
are then not consistent as they are asymptotically biased. 
We therefore combined the likelihood of the reverse 
WTD and that of a logistic regression to allow likelihood 
estimation of the OR in case–control studies with expo-
sure information based on registry data in a single joint 
model. We based our approach on noting that logistic 
regression in a case–control study models the relation 
between exposure and case–control status. When using 
pharmacoepidemiologic register data, exposure status is 

not directly observed (did the patient actually take the 
pill on the index date?), but this latent exposure status is 
modelled in the reverse WTD. The reverse WTD links 
information on last observed prescription redemption 
before the index date to two different latent sub-groups 
of patients: those who are continuing treatment on the 
index date and those who are stopping treatment. In 
our approach we allowed for the fact that patients, who 
have no dispensings after their last observed prescription 
redemption prior to the index date, may still be in treat-
ment on that index date, as they use up the dispensed 

Table 2 Simulation results, data generated with a Weibull backward recurrence density

The datasets had a sample size of 39,600, and on average 80% of patients continue treatment at the index date, 25% of patients have a prescription redemption in 
the year before the index date and the true OR is 3. For each setting 2,500 datasets were generated and analyzed. The Weibull Backward Recurrence Density used 
to generate data corresponded to a Weibull distribution with the same mean and variance as a Log-Normal distribution with µ and σ as its parameters, see text for 
details

(*) Analysis methods:

1:1 CC indicates 1 control per case, 1:10 CC indicates 10 controls per case

True expo – logistic regression with the actual exposure status as covariate (the reference analysis)

CC WTD – estimation based on joint likelihood for case–control status and the reverse WTD, Log-Normal Backward Recurrence Density

WTD prob – a reverse WTD with Log-Normal Backward Recurrence Density is estimated to predict the probability of an individual being exposed and this exposure 
probability is used as covariate in logistic regression

90 days – individuals are considered exposed if they have a redemption < 90 days before index date

30 days – individuals are considered exposed if they have a redemption < 30 days before index date, logistic regression

σ = exp(-0.35) σ = exp(-0.25)

Analysis method(*) Relative bias (%) SE log(OR) Coverage 
95% CI (%)

VIF Relative bias (%) SE log(OR) Coverage 
95% CI (%)

VIF

μ = log(1.5/12) 1:1 CC

True expo 0.0 0.027 95.7 1.00 0.0 0.027 95.8 1.00

CC WTD 0.9 0.029 94.2 1.15 0.5 0.029 95.1 1.18

WTD prob 22.6 0.040 0.0 2.24 18.0 0.038 0.1 2.05

90 days -6.0 0.027 33.2 1.06 -8.1 0.028 11.2 1.13

30 days -11.1 0.035 6.7 1.69 -13.3 0.038 2.4 2.02

1:10 CC

True expo 0.0 0.036 95.4 1.00 0.0 0.036 95.2 1.00

CC WTD 0.6 0.038 94.9 1.08 0.5 0.038 95.2 1.10

WTD prob 11.2 0.049 28.7 1.78 8.6 0.047 48.5 1.68

90 days -6.5 0.037 52.2 1.04 -9.5 0.038 20.6 1.09

30 days -16.8 0.044 1.1 1.45 -19.6 0.048 0.3 1.70

μ = log(2/12) 1:1 CC

True expo -0.1 0.027 94.2 1.00 0.0 0.027 95.8 1.00

CC WTD 1.7 0.029 90.1 1.21 1.6 0.030 91.5 1.25

WTD prob 18.8 0.039 0.1 2.13 14.4 0.037 0.9 1.97

90 days -8.0 0.029 13.7 1.16 -10.2 0.030 3.5 1.26

30 days -13.4 0.038 3.4 2.09 -15.2 0.042 2.6 2.50

1:10 CC

True expo 0.0 0.036 94.6 1.00 0.1 0.036 95.3 1.00

CC WTD 1.4 0.038 92.9 1.11 1.7 0.039 92.7 1.14

WTD prob 8.5 0.048 49.2 1.71 5.9 0.046 71.5 1.63

90 days -9.9 0.038 18.4 1.10 -12.8 0.039 4.7 1.17

30 days -20.0 0.048 0.4 1.74 -22.1 0.052 0.2 2.05
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quantity. As expected, the model in simulation studies 
provided virtually unbiased estimates for realistic sample 
sizes with valid confidence intervals when analyzing data 
generated from the same model as that used for analy-
sis, i.e. when the model was correctly specified. Since the 
model could not rely on observation of actual exposure 
status, the precision of its estimated effect was lower than 
for a corresponding model based on observed exposure 
status (VIFs ranged from 1.11 to 1.24 in simulations). 
It should be noted that since actual treatment status is 
a latent parameter in the model, it does not determine 
individual exposure status as such – rather it estimates 
the most credible parameters governing the exposure-
outcome association in combination with parameters of 
the reverse WTD. For the other methods, it was some-
what surprising for us that the method using probability 
of exposure as covariate was not unbiased. This is how-
ever due to misspecification of exposure status: If expo-
sure status is truly binary, as is the case in our simulation, 
then any estimated probability of exposure represents 
a misclassification of the individual’s exposure status, 
which will result in bias [10].

We are not aware of other methods that allow direct 
estimation of the exposure OR in a case–control study 
in which exposure status is latent and only indirectly 
linked to observed prescription redemptions. Abraham-
owicz and co-authors investigated how different models 
for the exposure-outcome relation over time could be 
used in prospective studies on the risk of adverse effects 
with pharmacoepidemiological registry data [11]. They 
relied on model diagnostic criteria to identify the correct 
model among many candidates and found substantial 
bias associated with misspecification of the exposure-
outcome relation with respect to timing. In our model 
we assumed that it was the exposure status on the index 

date, although latent, that induced a potential effect on 
case–control status.

The main advantage of our model is its reliance on 
general likelihood theory and an explicitly stated model 
for which assumptions can be checked. The model can 
therefore be expected to work well in a variety of settings 
irrespective of disease and outcome, as long as treatment 
consists of episodes with multiple prescription redemp-
tions and that the relevant exposure is a binary status on 
the index dates for cases and controls. Still, the model 
also has several limitations. First, the method does not 
allow taking into account any matching. This is expected 
to dilute effect estimates [12]. Including matching vari-
ables as covariates in the estimation may to some extent 
remedy this, and we did indeed see that this strategy pro-
vided similar results with the standard analyses in our 
application. Second, even when the model is correctly 
specified it is complex, and the maximum likelihood esti-
mation procedure may occasionally not converge. Third, 
the method relies on the simplifying assumptions of the 
BRD being similar between cases and controls, and that 
patients having no dispensings after the index date may 
remain in treatment for a period of time after their last 
prescription redemption with a distribution of prescrip-
tion durations similar to that seen among patients con-
tinuing treatment. Fourth, while we did examine the 
method’s performance with some misspecification of 
the BRD, it is not clear how vulnerable the method is to 
more severe model-misspecification. For mathematical 
feasibility we modeled event times and case–control sta-
tus as independent given the latent exposure status, but 
this may not hold for NSAID and UGIB, where we expect 
recent initiators to have a higher risk than later in the 
treatment phase [13]. Addressing this will require further 
modelling, but we have likely underestimated the effect 

Table 3 Estimated association between NSAID use and severe upper gastrointestinal bleeding

Case–control study of 3568 cases and 35,552 controls. See text for technical description of exposure definitions and covariate adjustment. Conditional results are 
based on conditional logistic regression which accounts for matching on age and sex. Ordinary results are based on ordinary logistic regression (unconditional), but 
where sex and age are included as covariates, both in the crude and adjusted analyses

Exposure definition n Crude OR (95% confidence 
interval)

Adjusted OR (95% 
confidence interval)

Upper/lower confidence 
limit ratio for adjusted OR

Fixed window, 30 days 9,453

Conditional 7.06 (6.17—8.06) 5.17 (2.40—11.11) 4.62

Ordinary 6.91 (6.19—7.71) 3.85 (2.09—7.07) 3.38

Fixed window, 90 days 12,662

Conditional 4.96 (4.46—5.51) 4.73 (2.72—8.23) 3.02

Ordinary 4.87 (4.43—5.36) 3.52 (2.19—5.65) 2.58

WTD treatment probability 39,119

Conditional 6.99 (6.35—7.69) 4.37 (3.62—5.28) 1.46

Ordinary 6.90 (6.28—7.58) 3.94 (3.29—4.72) 1.43

Joint likelihood model 39,119 5.57 (5.08 ‐ 6.05) 2.52 (1.59 – 3.45) 2.18
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of NSAID on UGIB in our analysis based on the devel-
oped joint likelihood. Finally, the developed model only 
estimates the effect of current use, i.e. the effect of being 
exposed on the index date (a binary covariate). In many 
settings, it will be of interest to allow for more complex 
characteristics of exposure such as time since treatment 
initiation and total amount consumed. This is however 
complex, and more work is needed to incorporate this in 
the model.

Conclusions
We have developed a novel likelihood-based method 
which provides direct estimation of the exposure effect 
in case–control studies with exposure information 
obtained from pharmacoepidemiological data. The most 
important contribution is to show how formal exten-
sion of the reverse WTD model allows flexible estima-
tion without use of expert input on expected patterns of 
drug use for definition of exposure status. Specifically, 
the established model provides estimates relying only on 
the actually observed data, i.e. case–control status and 
last prescription redemption before the index date, pos-
sibly supplemented with information on confounders 
that can be included in the estimation. The set of covari-
ates included can potentially vary between parameters 
in the joint likelihood, such that for example the reverse 
WTD part of the model can rely on covariates informa-
tive for drug use patterns, while the effect parameter can 
be adjusted for confounding variables. The method can 
be expected to provide a similar precision to a study with 
observed exposure status without misclassification, if it has 
a 25–50% larger sample size. The developed model only 
applies to case–control studies, but may provide a starting 
point for development of models for other study designs.
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